
756 

Acta Cryst. (1983). A39, 756-761 

The Effect of Random Errors on Partially Phased Fourier Maps 

BY W. JAUCH 

Hahn-Meitner-lnstitut ffir Kernforschung, Glienicker Strasse 100, D- 1000 Berlin 39, 
Federal Republic of  Germany 

(Received 16 September 1982; accepted 28 April 1983) 

Abstract 

Probability methods are used to investigate the effect of 
random errors on partially phased Fourier maps of 
non-centrosymmetric structures. Two sources of error 
are considered: (i) inaccuracies in the atomic co- 
ordinates of the phasing model; (ii) errors in the 
observed structure-factor magnitudes. Expressions for 
both the error level in the unit cell and the peak heights 
at the atomic positions are derived. The results are 
illustrated for neutron diffraction studies of proteins. 

1. Notation 

FNex p (i~ps) structure factor of the complete struc- 
ture (N atoms) 

F~ observed structure-factor magnitude 
F e exp (i~pe) structure factor of the P known atoms 

P 

F~ exp ( i ~ )  = Z bp exp (2n/H.r~) calculated struc- 
p = l  

ture factor corresponding to inaccurate 
positions ~ of the P known atoms 

FQ exp (i~pe) structure factor of the Q unknown atoms 
rp, rq positions of the P and Q atoms 
bp, bq atomic scattering factors of the P and Q 

atoms 

P Q 

z~=y .  b~, zQ=y.  be, 
p=l q=l 

2:,~= sp + 2:Q, 
a~ = Z~/ZN, a~ = Z e / Z  ~. 

2. Introduction 

When part of a crystal structure is known, Fourier 
syntheses with coefficients F~ exp (i~e) are often used 
to locate the remainder of the structure. The char- 
actedstic features of partially phased Fourier maps 
were first discussed by Luzzati (1953) assuming 
error-free data [i.e. F s exp (i~p~,)]. He demonstrated that 
peaks representing atoms are expected to show up with 
weights different from their true values. 
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In the present paper Luzzati"s probabilistic analysis 
is extended to include the effect of random errors in the 
observed structure-factor magnitudes and in the posi- 
tions of the known partial structure. 

Phasing models with large errors in the atomic 
coordinates are usually met with in the protein- 
structure field. In this connection it is interesting to 
study quantitatively how these errors affect both the 
maxima of the density distribution at the atomic sites 
and the noise level in a Fourier synthesis. Knowledge of 
these values is important in judging the credibility of 
structural features in the Fourier map. In addition, it is 
useful to judge the suitability of the initial trial structure 
before starting data collection with a given crystal. 

We shall consider crystals and models which satisfy 
the requirements of the acentric distribution of Wilson 
(1949). 

3. Random positional errors in the partial structure 

A Fourier synthesis with the coefficients F N exp (i~p~) is 
considered. F N is the correct structure-factor mag- 
nitude of the total structure, ~p~ is the phase angle 
calculated from the inaccurate positions of the partial 
structure. The coordinate errors Ar are assumed to be 
normally distributed random vectors. 

3.1. Peak height at r~ 

The average peak height of an input atom at the 
inaccurate position r~ may be written as the following 
conditional average 

Ho oo oo 27t 

(p(r~)) = f dart  f f f Fucos (2~zH.r~-- ~p ~) 
0 0 0 0 

× p(Fs; F~,, q~) p(F~, ~p~,; f~) dtp.g dF  u dF~, 

(1) 

where H 0 is the limiting radius Of the reciprocal-lattice 
vector H and d3H is a volume element of reciprocal 
space. 

The conditional probability density function (here- 
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after p.d.f.) of FN, given F~, and 09~, is known to be 
(Srinivasan & Chandrasekaran, 1966) 

2FN [ F2 + D 2F~ 2] 
: exp - P(FN; F~, ~o~,) Z N -  D2 ,~'e -~N ---- -D2 Z J 

× I° \Z N - D 2 Zp/' (2) 

where 

D=exp - - T  <Idrl)EH: . (3) 

(IArl)  is the mean positional error and I 0 is the 
zero-order modified Bessel function. 

p(F~, tp~; fff) is the conditional p.d.f, of F~ and ~0~, 
given the structure-factor contribution 

From 

g = b u exp (2mH. r~). 

1 [ 
p(F~; f~) = n(Ze _ bE ) exp . ~-,,-- ~ ] (4) 

(Wilson, 1949) it follows that 

p(Ff,, q~; g ) =  Ff, exp - 
nZ~, -~pJ  

[1 2b, F~ cos (2nH. ffp -- q~) ] × + 
z~ 

(5) 
since 

IFg gl2=eg + b~- 2b~F~ cos (2~rI.rg- ,g) 

and X e >> b 2. 

Substitution of (2) and (5) into (1) and integration 
over the structure-factor variables leads to 

with 

xo 
(p(r~)) = f bp v d 'H (6) 

0 

r=- -  E(aA)-- T 
O" 1 

O" A =o ' ID  , (TB---- (1 - - 4 )  m. 

K(x) and E(x) are the complete elliptic integrals of the 
first and second kinds: 

n/2 

K(x) = J" (1 - x 2 sin 2 ~o) -v2 do 
0 

n/2 

E(x) = f (1 -- x 2 sin 2 ~o) In do. 
0 

r is the weight by which the atomic scattering factor is 
modified relative to the true structure. 

3.2. Peak height at rp 
The average peak height of an inaccurately posi- 

tioned atom at its true position r v may be written as 

H o o0 o02~t 

(p(rv)) = f d ' n  f f f FNCOS (2nH.rp--  tp~, ) 
0 0 0 0 

x P(FN;F~,(p~,)p(F~,,(p~,;fv)d~o~,dFNdF~,. 
(8) 

The conditional p.d.f, of F~,, ¢p~,, given the struc- 
ture-factor contribution fv = bp exp (2zdH. rp), can be 
derived from the relation 

eo 2n 

p(F~, q~; fp) = f f p(F~,, ~o[,; F e, ~Oe) 
0 0 

x p(F e, q~p; fp) dtpp dFp (9) 

using the known conditional p.d.f, p(F~, ~o~; Fj,, ~oe) 
(Luzzati, 1952). p(F e, ~0p; f~,) is analogous to (5). The 
appropriate integrations yield 

p(F~, ~o~,; fv)= F~ exp [-- F~2 ] 

x ( - ,  
& 

(10) 

where again b~ ,~ Zj, has been taken into account. 
Substitution of (2) and (10) into (8) and integration 

leads to 

H0 
(p(rp)) -- f bpxpd3H, (11) 

0 

Xp = -  (aA)-- K(a4) (12) 
(71 T " 

Z~ is the weight by which the atomic scattering factor is 
modified relative to the true structure. 

3.3. Peak height at rq 
The average peak height of an unknown atom, 

situated at rq, may be written as 

H o oO o0 2,t 

(p(rq)) = f dart f f f FNCOS (2~zH.rq-- (P~) 
0 0 0 0 

x p(FN;F~,,(p~,,fq)p(F~,,(P~)Oq~dFNdF~,, 
(13) 

where p(F~,, ~o~) is the acentric distribution (Wilson, 
1949) with parameter 2 e. 

The conditional/p.d.f, of F N, given F~, ~o~, and the 
structure-factor contribution fq = bq exp (2n/H. rq), can 
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be readily obtained from expression (A 7) of Srinivasan 
& Chandrasekaran (1966): 

FN 
P(Fu; F~,, ~o~,, fq) = 

rc(Z N -- D 2 Xe) 
2n 

× f e x p - [ F ~  + IDF$ + fql 2 
o 

+ 2FNIDF~ + fql cos fl][X N -  D 2 Zv] -~ dfl. (14) 

Now, insert 

I DF  7, + fql 2 = D 2 F~ 2 + b E 

+ 2bq DF~ cos (2zcn. rq - r#~) 

into (14) and expand the exponential function 
(b 2 ~ X N - D 2 Xv). Substitution of (14) into (13) and 
integration leads to 

n0 
(p(rq)) = J bqXQ dan, (15) 

0 

1 
)(42 = 2O----~A [E(crA)-- a~ K(crA)]. (16 )  

3.4. Error in the Fourier map 

The mean-square difference between a Fourier map 
based on FN and that based on FN exp (i~0~) is given by 

((AP) 2) = 2V-2 Z F~[1 - cos (¢Pu - ~P~)I 
H 

= 2 ( X u / V  ) 

no 
x J (1-(F~cos(~ou-~p~))/r,N)d3H, (17) 

o 

where V = unit-cell volume. Substitution of the average 
value 

1 
( r ~  cos (¢#u--¢#~,))= Z" N - -  

2ca 

x [(1 + o ] ) E ( e A ) - - e ~ K ( e A ) I  

(18) 

(see Appendix*) into (17) yields an a priori formula for 
((Ap)2). 

The mean-square bias due to the systematic re- 
duction and enhancement of the peak heights may be 
expressed as 

62=  V - 2 ~  {(1 --ZQ) 2EQ + (1 -Xv)  2 E v} 
H 

no 
=(XN/V).f {(1--Ze)2022+(1-L,,)2e~}d3H (19) 

o 

* The Appendix has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 38549 (4 
pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. 

(Luzzati, 1953) assuming non-overlapping atoms. 
The variance tr2(p) is related to the mean-square 

error and bias by 

o2(p) = ((Ap) 2) - a2. (20) 

Substitution of the above expressions into (20) provides 
an a priori estimate for the mean noise level of the 
partially phased Fourier map. 

3.5. Discussion 

For a rigorous evaluation of the average peak 
heights the H dependence of both the atomic scattering 
factors (including the temperature factor) and the 
weights has to be taken into account. 

As an example we consider in Fig. 1 the variation of 
the peak height of unknown hydrogen atoms in a 
neutron Fourier map (b H = - 3 . 8  fm) as a function of 
the resolution dml . (= Ho l) for different fixed values of 
(IArl) .  The thermal parameter and the fractional 
partial structure contribution have been assigned to 
B = 10 A 2 and a~ = 0.7. These values are typical for 
neutron diffraction studies of proteins where initial 
phases are calculated from a structural model de- 
termined from X-ray diffraction. It is seen that errors in 
the model up to about 0.2 A affect the peak height only 
slightly. For large positional errors, however, the peak 
strength has approached a constant value already at 
moderate resolution. Hence, it does not pay to collect 
neutron data at very high resolution (dmi n < 1.4 A) 
unless one can resort to a sufficiently refined X-ray 
model of the protein. This result is not unexpected since 

k <lAd> 
I 5 ~Nx X1. 

0 ~ I , , ~ , I , , , , I , 

1. 1.5 2. 
din,. (A) =-- 

F ig .  1. Average peak height at the position of  a hydrogen atom 
(B -- 10 A 2) in a Fourier map based on neutron diffraction data 
as a function of the resolution for a~ 2 = 0.7 and different values of 
~lArl). 
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the effects of coordinate errors are more important at 
high resolution where the d spacings become com- 
parable to the magnitudes of the errors. 

Fig. 1 should be compared with Fig. 2 which shows 
the standard deviation a(p) evaluated from (20) with 
the same parameters used above. Zw/V has been 
assigned to 2.71 fm ~ A -3 (partially deuterated myo- 
globin). 

In order to get some feeling for the variation of the 
peak heights it is convenient to consider the average 
over reciprocal space 

Ho 
X =  3Ho 3 f XH 2 dH, (21) 

0 

m 

where X stands for r, Ze or ZQ. X are the weights which 
correspond to point atoms (neutron-diffraction case) at 
rest. X may be seen to depend on both al and the 
product no( IAr l ) .  In general, (21) has to be evaluated 
by numerical integration. Only for a perfectly accurate 
partial structure (D = 1) are the relative peak heights 
independent of H 0 (Luzzati, 1952; Nixon & North, 
1976). 

The variation of the average values ~', Ze and J/o~ as a 
function of H0(IArl ) for different values of al are 
shown in Fig. 3. It is apparent that peaks at inaccurate 
positions are only slightly suppressed; the decrease in 
peak strength is much more pronounced at the 
positions rp and rq. 

The theory presented here does not account for 
features due to atomic overlap resulting either from the 
positional errors or from a limited resolution. The 
influence of adjacent atoms on one another is de- 

o[p)(fm ! 3 )  

05 

<l~r l> 

' l " ~ o . 8  ~, ~ 
0.6 

~ 0 . 2  

I I I 

1. 1 .5  2 .  

dm~o (A) =- 

Fig. 2. Average standard deviation in a neutron Fourier map as a 
function of the resolution calculated with the parameters from 
Fig. 1 (T,N/V= 2.71 fm 2 A-3). 
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1 

0.5 

7------------ 0.1 

4 

0! 
~ o 7  

O I i i 1 
0 0.2 0.4 0.6 0.8 

H o <l,drl> 
(a) 

1 ,  • 

I \ 

0 0.2 0.4 0.6 0.8 
H o <lz~rl> 

(b) 

0.5 

% "--0 
0.10 ~ o  

0 0.2 0.L, 0.6 0.8 1 
H o <l,~rl> - ~  

(c) 
Fig. 3. Overall values of the fractional peak heights at (a) ~, (b) rp 

and (c) rq as a function of the product H0(IArl ) for different 
values of a~. 
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creased in difference Fourier maps to which the above 
results also apply. 

It is interesting to note that the expressions for the 
peak heights are closely related to some correlation 
functions discussed by Srinivasan & Parthasarathy 
(1976, p. 111): 

r =  Z~-'(FN F~, >, (22) 

xQ = ½(cos ( e , , -  (23) 

4. Random errors in the structure-factor magnitudes 

A Fourier synthesis with the coefficients F~ exp (Roy) is 
considered. F} is the observed structure factor mag- 
nitude, tp~, is the phase angle calculated from the correct 
positions of the partial structure. 

It will be assumed that F~, follows a normal 
distribution of variance a 2 around F~, 

p(F},  s; F u) = (2~ZaFZ) -'/2 

X exp [--(F~ 2 + F~--2sF~Fu)/2a2FI 

(24) 

with s = +_ 1 according as F~ ~ F u. The conditional 
p.d.f, of F~, given F u, is obtained by summation over 
the two values of s: 

p(F~v; FN) = (2/7r02) '/2 exp [--(F~ 2 + F2)/2021 

x cosh (Fg FN/a2). (25) 

4.1. Peak height at rp 

An expression for the average peak height of a 
known atom follows from (1) by replacing the set (F N, 
F~, q)~,, r~) by the set (F~, F e, %,, rp). 

The function p(F~; F e, ~o~,) can be obtained from the 
relation 

oo 

p(F}; F~,, ~oe) = f p(F~; F u) p(Fu; Fx,, %,) dFu (26) 
0 

using the conditional p.d.f.'s from (25) and (2) [with 
l~v-  Fv, D = 11. 

It is possible to carry out the integrations over F}, 
F e, (0~ analytically, leading to 

GO 

r =  024 071 7W 2 f x 2 exp (-x2)~ Fl(~; 1; 62 X 2) g dx (27) 
0 

with 

g = erf + - ~  exp ( - x  2/2V/), (28) 

where x = FN/Zb/2, el = @ / Z  e and ~F~ is the confluent 
hypergeometric function. 

In the limiting case that @ = 0 the function g equals 
unity and integration reduces (27) to (12). Direct 

evaluation of (27) shows that the error function may be 
replaced by the asymptotic formula 

erf (z) _~ 1 - 7C -1/2 exp (-z2)/z  (29) 

(Abramowitz & Stegun, 1965) without appreciable 
error. Equation (29) implies g --~ 1. Therefore, r is 
practically independent of a 2. 

4.2. Peak height at rq 

Correspondingly, the weight of an unknown atom is 
obtained as 

oo 

Z = al az 2 zru2 f x4 exp (--x 2) IFI(~; 2; el 2 x 2) g dx 
0 

o2 
- - -  r (30) oI 

with r and g as defined by (27) and (28). Just as above, 
with g ~_ I (30) reduces to (16), and X is almost 
independent of the magnitude of the experimental 
errors. 

Hence, errors due to an imperfect model and 
experimental errors manifest themselves in different 
ways. Namely, experimental errors introduce back- 
ground fluctuations in the Fourier map but do not 
affect the average atomic peak heights. 

4.3. Discussion 

It has been repeatedly pointed out (e.g. Lipson & 
Cochran, 1968) that for small values of a~ accuracy of 
measurement is the limiting factor for the resolution of 
the unknown rest structure. A suitable criterion for the 
limitation of the method is provided by the following 
signal-to-noise ratio 

# =  [(p~)/a2(p)l I/2 (31) 

(Nixon & North, 1976). (p~) is the mean-square value 
of the average unknown density, written as a sum of 
non-overlapping atomic densities 

q = l  

d3r 

= v -2 z2)2 (32) 

Following the arguments of Luzzati (1953) the mean 
variance in the unit cell can be expressed as 

a2(p) = V-2 )_2. (F~ + 4 -  r2 Fe 2 -  Z 2 F~), (33) 
H 

again assuming non-overlapping atoms. Hence, in 
terms of normalized variables, 

= x a 2 / l  1 + e 2 - r 2 o12 - x 2 a~]  1/2 ( 3 4 )  
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07 

Fig. 4. Signal-to-noise ratio as a function of tr~ for different 
accuracies of measurement. 

with 

62=<a}>/s~. 
Fig. 4 shows the variation of ~t as a function of a 2 for 
different values of the mean normalized error e. It 
demonstrates the loss of structural information for 
finite 6 as a 2 --, 1. There occurs an optimum 
signal-to-noise ratio for tr~ ~_ 1 - 6. 

Assume the critical value of /~ for the statistical 
significance of the features in the map to be 0.5 
corresponding to a 2 --~ 0.5 for the error-free data. This 
implies that data with 6 = 0.1 should allow a structure 
completion from inspection of difference maps up to 
al 2 ~ 0.98. With 6 = 0.05 the corresponding value of a 2 
is even greater than 0.99. Hence, in general, accuracy 
of measurement should not be a very critical factor. 

A similar result is obtained from another argument. 
The observed data should meet the condition 

( I F  N -- Fpl)  > <a~-) '/z, (35) 

which can be rewritten in terms of the residual R(F)  
(=(,IFN- F~,I)/(FN)) as 

- -  R ( F )  > e (36) 
2 

since (FN) = (V/-n/2)Xff 2 (Wilson, 1949), Now, using 
the theoretical expression for R(F)  (Srinivasan, Rag- 
hupathy Sarma & Ramachandran,  1963) we find, for 
example, e (a 2 = 0.97) < 0.1 and e (a 2 = 0.99) < 0.06. 
The case that a22 is small occurs especially in protein 
crystallography when difference Fourier maps are used 
to reveal small molecules added to the protein 
(Henderson & Moffat, 1971). 

Equation (25) implies a preponderance of positive 
errors, i.e. F~ > Fu. The resulting bias in the density, 
however, is quite small. The average height of an 
atomic peak in an F~ exp (i~0N) map is obtained as 
(1 + 62)/(1 + 262) I/2 times the true height. 

The author is very grateful to Professor H. Dachs for 
having initiated and supported this work. 
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Abstract  

The numerical integration of the Takagi-Taupin  
equations using a constant step of integration does not 
allow the simulation of traverse topographs since the 
accuracy of the computation is rather poor. A new 
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algorithm is described in which the step of integration 
varies inside the crystal, following the oscillations of the 
amplitudes of the wavefields. The precision becomes 
good enough to simulate either section topographs, 
taking into account the real width of the incident beam, 
or traverse topographs. Moreover in most cases the 
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